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Gibbs Free Energy (G)

e G=H-TS

e Extensive property of a system

e State function, e.g., G(n, T, P)

e T and P are particularly meaningful
variables since AGgystem < 0 0r W yeerul provides
a criterion for the spontaneity of a chemical

or biological process at constant T and P.



Temperature and pressure dependence of G

(1) Closed system

G =H-TS
dG =dH-TdS -SdT
=dE + PdV + VAP -TdS — SdT
Recall:
First Law: dE = dQ + dW
or dE

dev + dWrev for a reversible process

or dE = dQ -PdV + dWetu
= TdS —PdV ifno useful work

Substituting,
dG=dE + PdV + VdP -TdS — SdT
=TdS — PdV + PdV + VdP -TdS — SdT
= VdP - SdT
From this result, it follows that for a closed system

(0G/OP)ry =V and  (0G/OT)pn =-S



AGgystem due to changes in temperature at constant P

(0G/0T)pn =-S

Tfinal

AG = -] S(T,P)dT

Tinitial

AGgystem due to changes in pressure at constant T

(0G/OP), =V

Pfinal
AG = | wv(,p)ap
Pinitial
(2) Open system
G(n, T, P)

However, because G is an extensive property, we
could write G(n, T, P) = n G (T,P). That is, the

Gibbs free energy of the system must be proportional



to the n, the number of moles of the substance, as well
as T and P. G (T, P) is the Gibbs free energy per
mole of the substance at temperature T and pressure
P. The molar free energy of a substance at T and P is
usually referred to as the chemical potential of the
substance at that temperature and pressure, and is

given the symbol p (T,P).

So, at a given T and P,
G=nG(,P) = npu(T,P)
and
dG = (0G/0T)p, AT + 0G/OP)yu dP + p (T, P ) dn
=-S(T,P)dT + V(T,P)dP +pu(T,P)dn
= -SdT + VdP + pdn

Note that the chemical potential p (T,P) is an
intensive property of the system, as it is the molar free

energy of the substance in the system.



Chemical potential is a powerful concept!

We now illustrate the power of the chemical potential

by way of a simple example: Phase equilibrium

Consider a closed vessel containing water vapor in

equilibrium with liquid water.

H0 (g) subsystem B

total system closed
but each phase open

H,0 (1) subsystem A

If the system is in internal equilibrium,
T =T"
superscript to denote phase
P*=P°=P
P® is the vapor pressure of the liquid at temperature T
Since T and P are constant, we can write
dG* = pA(T,P)dn®
dG® = 5T, P)dn®



Closed system: P, V work possible, but no other work.
At equilibrium,
dG=0=dG* + dG® = u(T, P) dn* + pu®(T, P) dn”
But dn® +dn® =0 sincenyu=n" +n"

or dn* =-dn®
So,

W T,P) = p*T,P)

Thus when two phases are in equilibrium in a
one-component closed system, the chemical potential
of the substance in both phases must be equal at the

equilibrium T and P.

We have derived an important result, because this
relationship enables us to relate the chemical
potential of the gas or vapor to the chemical potential
of the liquid at equilibrium at T and P. In a moment,
we shall take advantage of this result to obtain the

chemical potential of the liquid.



Before I proceed to the chemical potential of the
liquid, I would like to show that dE =T dS — P dV for
the entire system if it is in internal equilibrium.
Recall

dE* = TAdS*-P*dv* + p* dn*

dE®=  T®S®-PBdV® + u® dn®

[It turns out that the chemical potential

u = (CE/On)ys = (CH/On)pgs as well! ]

Adding,

dE* + dE® = T*dS* + T®dS® - PAdV* — PBdV®
+ uA dn® + uB dn®
or (dE*+ dEP)=
dE
T (dS* +dS®) —P@V* +dV®) + p* dn* + p® dn®
TdS -PdV 0

or dE=TdS-PdV



since T*=T"
p*=P" for two phases in equilibrium

A B

ut o =p

As I noted earlier, the outcome of the above analysis
should enable us to relate the chemical potential of
the liquid to the chemical potential of the vapor or gas

at equilibrium at T and P.

e Chemical potential of vapor

For convenience, the chemical potential of a gas or
vapor is always referred to that of the pure gas at 1
atm (standard pressure, P’) at the same temperature.

This reference is called the standard state. From
Pfinal
AG = | V(T P)dP
Pinitial
and assuming ideal behavior for the vapor, we obtain

Pvapor

uvapor (T, Pvapox) _ uovapor (T, P °) — j —\]—(T’ P) dP

PO



praor
- [ (RT/P)dP = RTIn(P"™™/P°)
PO
where_V— = RT/P is the molar volume of the gas, and
PY?P°" is the vapor pressure of the liquid at

temperature T. So
W2 (T, P = iapor (T, P') + RT In (PY***/P°)
where uovapo,. (T, P o) is the chemical potential, or free

energy per mole, of pure vapor at temperature T and

standard pressure of 1 atmosphere (P°).

So from Llhqmd (T, Phqund) — l.’lvapor(T, Pvapor)
Tliquid — Tvapor
liquid _ liquid
P = P
we obtain

uliquid (T, Pliquid) — uovapor (T, P °) +RT In (Pvapor /PO)



Note that the liquid is in equilibrium with its vapor
pressure at each temperature in this analysis, i.e., the
liquid is under a different pressure at each
temperature. One could, of course, add a foreign
gas that is insoluble in the liquid to bring the total
pressure on the liquid to 1 atm at each temperature.
There would be a small correction to the vapor
pressure of the liquid, or the partial pressure of the

liquid vapor in the gas phase.

Gibbs Free Energy, dG and AG for a multicomponent

system

The Gibbs Free Energy G is an extensive variable, so
for a multicomponent system at temperature T and

pressure P

® total pressure

Goystem(T, P)= 2.Gi = > ui(T, P)n;
i i

all components

and d(;system



T b2 a2
; arl, ., P

g noy... T, n, ny...
all components rr2 rr2

dP + ,ui(T,P)dn}

a A,
= [—Sﬁj;tﬂJ + (_.sﬁ}s)m) - Z/li (T, P)dn;
F o T i

all components

A simple multi-component system: Chemical

equilibrium for a homogeneous gaseous reaction

Consider the following homogeneous gaseous reaction
involving the ideal gases A, B, C, and D at T and P:
aA + bB —> ¢C+dD

At equilibrium, we could write

dG = Z].l]dlli = 0

chemical species

But dn; = xv;d¢ where £ = extent of reaction

v; = stoichiometric coefficient for the species i
+ for products

- for reactants



Therefore,

[ \
Z Vill; — Zvj;uj d§ =0

\ products reactants

or for above reaction:
¢ ue(T,Pc) + d pp(T,Pp) — 2 pa(T,P4) — b pp(T,Pp) = 0
where I have specified the partial pressures of the
gases at chemical equilibrium.
Now if the gases behave ideally,
na(T, Pa) only, i.e., depends on the partial pressure
of the gas in the mixture only, and independent of Pr,
and so on, and we may write
ua(T,Py) = pa(T,P)+RT In (Ps/P°)
e (T, Pg) = pg(T,P’)+RT In (Ps/P°)
pe(T,Pc) = pc(T,P’)+RT In (Pc/P°)
up(T,Pp) = wp(T,P")+RT In (Pp/P°)



Substituting,
¢ u°c(T) + d p°n(T) —a p°a(T) — b u®s(T)
+ ¢ RT In (Pc*/P°) + d RT In (Pp*/P°)
- aRT In (P,/P°) - b RT In (Pg/P°) =0

where explicit P° dependence of the standard
chemical potentials has been removed (1 atm always),
and “eq” has been added to the partial pressures of
the gases to denote that we are referring to the partial
pressures at chemical equilibrium.

Final result:

¢ n°c(T) +d p°p(T) — a pa(T) — b us(T) =

o (@@ || ETEY ]
AG" (1) = RTZn[(PA)a(PB)b} | +RT { PO)"(PO)”J i

_________________

!PCC !PDd )

CoNeF)

AG°(T) = -RTInKp

Since

where



AG (T) = ¢ p°(T) + d p°n(T) — 2 p°A(T) — b ps(1)
= standard free energy change

i.e., free energy change for the reaction:
a A(gas, pure, ideal, 1 atm, T )+ b B (gas, pure, ideal, 1 atm, T )

— ¢ C(gas, pure, ideal, 1 atm, T)+d IXgas, pure, ideal, 1 atm, T ).

Above, we have derived the result when the system

has reached chemical equilibrium. In general,

AG(T ,P)P= AG°(T) + RT InQ, where Q = equilibrium quotient
=rT

where QO Q)Ecll—)l)—d) der th diti f syst
= under the conditions of system.
(P4WP5")

If AG > 0, reaction will proceed to left
AG < 0, reaction will proceed to right as written

and AG=0, O=Kpand reaction has reached equilibrium .



Different Ways of Expressing the equilibrium

quotient Q

* Ox and Ky

¢ pd
Op = % subscript p to denote partial pressures
A~ B~

If component gases follow ideal behavior, then

Fe =Pr-Xeo Pg=Pr-X4

Pp=Pr-Xp Pp=Pr-Xp

X< Xp? o o
-~ Op =(Xg;a XDb)PT(C-H/l a b)=QXPT(C+d a-b)
A B

/
Ox

~AG(T,P)=AG’(T)+ RTIn P,“"“*“® + RTInQ,

T (&) c+d—a-b

PO

and at equilibrium



AG'(T,P)=—RTIn(P**"") - RTInK,

X QX d
where Ky-= (—uj
X49xg2 ),

Define AG°(T)+ RTInP°t9=9% = 4G (T, P)

where  AG®(T,P) refers to the free energy change for reaction:

a A (gas, pure, ideal, P)+b B (gas, pure, ideal, P)
— ¢ C (gas, pure, ideal, P)+dD (gas, pure, ideal, P)

* QC.and KC

Return to Op = [MJ

P42 pgt

niRT

For ideal gases, P = =

=GRT

SO we may rewrite Qp as

(gﬂ] RT€e+d-a-b) _ o prle+d-a-b)

C44 Cpb
and

AG(T) = AG*(T)+ RT In(RTY** ) 4 pT im0,



At equilibrium,

AG (T)=-RTIn(RT)" " — R K,
C.f CDQJ
where K =( T k] -
‘ CA CBb eq

Define AG (T)+ RTW(RT)™ " = AG" (T)"
then, 4G°(7) refers to the free energy change for

the following reaction:

a A (T, ideal gas, pure, 1 mole/ liter)
+b B(T , ideal gas, pure, 1 mole/ liter)
—® ¢ (T, ideal gas, pure, 1 mole /liter)

+d IT, ideal gas, pure, 1 mole /liter)

So, depending on the units used to express
equilibrium quotient, 4G°’s derived from equilibrium
constants (Xp,Ky,Kc) refer to different standard

conditions.




Chemical Equilibria for Ideal Liquid and Solid

Solutions

e What is an ideal solution?

Ideal behavior in a gas results when there are no
intermolecular forces between gas molecules.
However, such a definition of ideal behavior would be
unrealistic for any condensed phase. Instead, the
ideality concept for liquid and solid solutions
stipulates complete uniformity in all intermolecular
interactions. It turns out that an equivalent
definition of an ideal solution requires that the
“escaping tendency” of each component, measured by
the partial vapor pressure, be proportional to the
mole fraction of that component in the solution. It is
helpful to look at this concept from a molecular point
of view. Consider an ideal solution of A & B. The
definition of ideality implies that a molecule of A in

the solution will have the same tendency to escape



into the vapor whether it is surrounded entirely by
other A molecules, entirely by B molecules, or partly
by A and partly by B molecules. This means that the
intermolecular forces between A and A, A and B, and
B and B are all the same, i.e., there is uniformity in all

intermolecular interactions.

Some examples of an ideal solution are:
(1) Mixture of isotopes;
(2) Molecules that are closely similar chemically

and in shape;

e.g. ethylene bromide and proplylene bromide,
benzene and toluene,
n-hexane and n-heptane,

(molecules need to be of similar size and shape, similar dipole

moments and electric quadupole moments, similar electronic
structure)

e Raoult’s Law

If a solution is ideal, the partial vapor pressure of any

of its components, such as A, is equal to the product of



the mole fraction of the substance and the vapor

pressure of the pure liquid A. This is Raoult’s Law,

and is mathematically expressed as

P4(T)=X4P4 (T)

where P4(7) is the vapor pressure of A above the

ideal solution, x4 is the mole fraction of A in the

solution, and P, (7) is the vapor pressure of pure

liquid A at temperature T.

e Typical Raoult-Law behavior of vapor pressures.

varies with composition
(in general, we shall have

Piotal P+ P foreigngas =1 atm)

*

\PB

straight lines

pure A

Xpy —

1.0
pure B



e Chemical potentials of components in an ideal

solution

Consider a two component system of an ideal solution
of A and B in equilibrium with their vapors. Assume

ideal behavior of the vapor. Then

P Asolution(T) = 1d"®P (1) = p1g° P (T)+ RTInP 4"
and

U Bsolution (1)Y= u"P (T)= up° Y (T)+ RT In Pg"P

Solution ideal = apply Raoult’s Law,

Then

uASOluﬁon(T) = u4° " P(T)+ RTInX4P4"

ﬂBsolution (1) = ug” Y (I)+RTIn XBPB*

yAsolution (T) — #A"Va'P (T) + RTln(])A*/PD)'l' RT IIIXA

u, (1)



ﬂBsolution (T)= o (T)+ RT ]n(PB* /P°)+ RTIn XB

pure gases
at 1 atm

p” (D)

Redefining standard states

p4%°M01 (T = 114 (T) + RT In X4

y Bsolution (T)= ”Bo' (1) + RTInXp

Chemical Potential of a Solute in Solution

In the previous example of an ideal binary solution of
two completely miscible components A and B, one
does not have to distinguish between solvent and
solute. Supposedly, the /ffolvent” and 4folute” are
sufficiently similar that this distinction is unnecessary.

But for most solutions, this isn¥3 the case. We now

treat this more general case.

e Henry Law




In a very dilute solution of B (solute) in A (solvent),
each B molecule is completely surrounded by A
molecules, and therefore the partial vapor pressure of
B in this uniform environment is also proportional to
the mole fraction Xz, but the proportionality

constant is no longer P5’. We write

PR = k" Xp (infinite dilution limit)

where "= Henry’s Law constant for solute B.

Such a system is clearly not ideal in the sense

mentioned earlier for an ideal solution. However,

for the solvent A,

P4 = P4 X4

since A is an ideal solvent when the concentration of B

is small.

So for this binary solution,



#Asolution(T) _ ﬂASOI"e”t (1= pus” (1) +RTInX 4

1 Bsolution (T) =i Bsolute (T) _ ﬂBd (T)+ RTInXp

T infinite dilution limit

where

=

:

, H
s’ (1= s () R S

pa” (1) = pa® P (T)+ RTln[

~

P° =1 atm

&

Instead of mole fraction for B, Xxp is wusually

converted to concentration units.

Molarity = # of moles of B /1 liter of solution

_ nR
Cp = 1000 ml of solution

ng+ng

ng= (1 000p—-CpMp )/M 4 in_ 1000 ml of solution




p = density of solution; A4, Mp molecular weights of

A and B respectively.

NB = CR in 1000 ml of solution

so that

__hp _ CR
“ng+ng  (1000p- CpMp)M4+Cg

XB

In dilute solutions,

p —> p4 density of solvent
(CBMA - CBMB) << 1000p

o CeMy
~XB~7000p 4

or Xp Is proportional to Cz!

Molality = # of moles of B / 1000 grams of solvent.

— BB
"B = 7000 grams of A

nyg+ng

nB =mp in 1000 grams of solvent



1000

BA=—7— in 1000 grams of solvent

A

______mg
XB =0000/M )+ mp

so that

In dilute solutions,

Mgmp << 1000

mpMy
XB= 1000

or Xp is proportional to mp!

" = (1) KT X
solute

— o MA
up (T)+ RTIn(]OOOpA)CB

. M
=u, (I')+RTIn < ’

#p" (T)

L8

where Cg° = I mole / liter

C
+ RT In—=

o



new chemical potential of solute B in solvent A at concentration
standard | of 1 mole/liter (1 M) at temperature T and pressure 1 atm,
state but environment identical to that B in solution at infinite

dilution.

uBsolution =u Bo’(T) + RTInXp
(solute)
of M
=up (1)+ RTln(I—O“O%]mB
, M m
= °T+RT1n( A) : + RTIn—=
:IIB ( ) 1000 mBJ mBo
/ where mg° = 1 molal = Im
#BON(T)
new chemical potential of solute B in solvent A at concentration

standard | of 1 molal (1 M) at temperature T and pressure 1 atm, but
state | jdentical to B in the solution at infinite dilution.




